Robust Rigid Point Registration based on Convolution of Adaptive Gaussian Mixture Models
نویسندگان
چکیده
Matching 3D rigid point clouds in complex environments robustly and accurately is still a core technique used in many applications. This paper proposes a new architecture combining error estimation from sample covariances and dual global probability alignment based on the convolution of adaptive Gaussian Mixture Models (GMM) from point clouds. Firstly, a novel adaptive GMM is defined using probability distributions from the corresponding points. Then rigid point cloud alignment is performed by maximizing the global probability from the convolution of dual adaptive GMMs in the whole 2D or 3D space, which can be efficiently optimized and has a large zone of accurate convergence. Thousands of trials have been conducted on 200 models from public 2D and 3D datasets to demonstrate superior robustness and accuracy in complex environments with unpredictable noise, outliers, occlusion, initial rotation, shape and missing points.
منابع مشابه
DUGMA: Dynamic Uncertainty-Based Gaussian Mixture Alignment
Registering accurately point clouds from a cheap low-resolution sensor is a challenging task. Existing rigid registration methods failed to use the physical 3D uncertainty distribution of each point from a real sensor in the dynamic alignment process mainly because the uncertainty model for a point is static and invariant and it is hard to describe the change of these physical uncertainty model...
متن کاملRobust Non-Rigid Point Set Registration Using Student's-t Mixture Model
The Student's-t mixture model, which is heavily tailed and more robust than the Gaussian mixture model, has recently received great attention on image processing. In this paper, we propose a robust non-rigid point set registration algorithm using the Student's-t mixture model. Specifically, first, we consider the alignment of two point sets as a probability density estimation problem and treat ...
متن کاملBi-Stage Large Point Set Registration Using Gaussian Mixture Models
Point set registration is to determine correspondences between two different point sets, then recover the spatial transformation between them. Many current methods, become extremely slow as the cardinality of the point set increases; making them impractical for large point sets. In this paper, we propose a bi-stage method called bi-GMMTPS, based on Gaussian Mixture Models and Thin-Plate Splines...
متن کاملSpatial deformation models for non-rigid image registration
Spatial deformation models are used to regularize image registration such that they prevent physically and anatomically unlikely transformations. It is often assumed that optimal models are obtained by modeling deformation properties of real tissues. However, this is not exactly true, because external forces, which drive the registration, in general differ from forces which in reality deformed ...
متن کاملNon-rigid Image Registration Using Gaussian Mixture Models
Non-rigid mutual information (MI) based image registration is prone to converge to local optima due to Parzen or histogram based density estimation used in conjunction with estimation of a high dimensional deformation field. We describe an approach for non-rigid registration that uses the log-likelihood of the target image given the deformed template as a similarity metric, wherein the distribu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1707.08626 شماره
صفحات -
تاریخ انتشار 2017